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Epidemiological and health impact studies of fine particulate matter (PM2.5) have been limited in China because
of the lack of spatially and temporally continuous PM2.5 monitoring data. Satellite remote sensing of aerosol op-
tical depth (AOD) is widely used in estimating ground-level PM2.5 concentrations. We improved the method for
estimating long-term surface PM2.5 concentrations using satellite remote sensing and a chemical transport
model, and derived PM2.5 concentrations over China for 2006–2012. We generated a map of surface PM2.5 con-
centrations at 0.1° × 0.1° over China using the nested-grid GEOS-Chemmodel, most recent bottom-up emission
inventory, and satellite observations from the MODIS and MISR instruments. Aerosol vertical profiles from the
space-based CALIOP lidar were used to adjust the climatological drivers of the bias in the simulated results,
and corrections were made for incomplete sampling. We found significant spatial agreement between the
satellite-derived PM2.5 concentrations and the ground-level PM2.5 measurements collected from literatures
(r = 0.74, slope = 0.77, intercept = 11.21 μg/m3). The population-weighted mean of PM2.5 concentrations in
China is 71 μg/m3 and more than one billion people live in locations where PM2.5 concentrations exceed the
World Health Organization Air Quality Interim Target-1 of 35 μg/m3. The results from our work are substantially
higher than previous work, especially in heavily polluted regions. The overall population-weighted mean
uncertainty over China is 17.2 μg/m3, as estimated using ground-level AOD measurements and vertical profiles
observed from CALIOP.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Chronic exposure to fine particulatematterwith aerodynamic diam-
eters of less than 2.5 μm (PM2.5) is associated with increased cardiovas-
cular and respiratory morbidity, and all-cause mortality (Dockery et al.,
1993; McDonnell, Nishino-Ishikawa, Petersen, Chen, & Abbey, 2000;
Pope et al., 2002). Following the rapid economic development and ur-
banization in China, levels of PM2.5 have become the highest in the
world (van Donkelaar et al., 2010). However, epidemiological studies
have been limited in China because of the lack of spatially and temporal-
ly continuous data regarding PM2.5 exposure. Prior to 2013, there was
no official nationwide PM2.5 dataset and only research groups had im-
plemented a number of monitoring sites (Yang et al., 2011). Since
g).
January 2013, a national network for PM2.5 monitoring has been
established, which encompasses all the provincial capital cities and
some other major cities. Unfortunately, even this network has limited
geographical coverage and most of the monitoring sites are located in
urban areas. Furthermore, pointmeasurements alone are unable to pro-
vide information on regional variable concentrations and therefore, ad-
ditional observations are needed to improve our understanding on the
spatial patterns of ambient PM2.5 concentrations over China.

Advances in satellite remote sensing have provided valuable insights
into surface air quality (Hoff & Christopher, 2009; Martin, 2008).
Satellite-based estimates of PM2.5 concentrations are useful supplements
to ground-based PM2.5 measurements because of their broad spatiotem-
poral coverage. The Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) on-
board the Terra satellite, launched by the National Aeronautics and
Space Administration (NASA), offer global observations of aerosol optical
depth (AOD), which is defined as the integrated extinction by aerosol
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over a vertical column of unit cross section (Diner et al., 1998; Kahn,
Banerjee, McDonald, & Diner, 1998; Levy, Remer, Mattoo, Vermote, &
Kaufman, 2007; Remer et al., 2005). AOD is sensitive to fine particles
and it has been proven well correlated to PM2.5 concentrations (Chu
et al., 2003; Engel-Cox, Hoff, & Haymet, 2004). However, a quantitative
PM2.5/AOD relationship is needed in order to assess PM2.5 concentrations
quantitatively using AOD.

Many studies have investigated the relationship between column
AOD and surface PM2.5 concentrations using statistical models (Che,
Yang, Zhang, Zhu, Ma, Zhou, et al., 2009; Hu et al., 2013; Kloog,
Nordio, Coull, & Schwartz, 2012; Lee, Liu, Coull, Schwartz, & Koutrakis,
2011; Ma, Hu, Huang, Bi, & Liu, 2014). Early studies using simple linear
regression models obtained reasonable results (Wang & Christopher,
2003); however, this relationship could not be extended to other re-
gions or times because of the effects of variations in emissions and me-
teorological conditions (Zhang, Hoff & Engel-Cox, 2009). Recent studies
have involved more advanced regression models and meteorological
parameters, to improve the representation of the relationship between
AOD and PM2.5, resulting in significantly enhanced estimates of PM2.5

concentrations (Beckerman et al., 2013; Hu et al., 2014). Ma et al.
(2014) recently took advantage of the newly established Chinese na-
tional monitoring network and estimated the PM2.5 concentrations
over China in 2013 from MODIS and MISR AOD using geographically
weighted regression (GWR) model. However, statistical models rely
largely on ground measurements of PM2.5 data, which were not avail-
able before 2013 in China.

Another common method for simulating the AOD–PM2.5 relation-
ship is using the chemical transport model to provide the spatiotempo-
ral variability of the PM2.5/AOD ratio. Liu et al. (2004) proposed the
method first and estimated PM2.5 concentrations over the United
States from MISR observations. Later, van Donkelaar et al. (2010) ex-
tended the method to the global scale using combined MODIS and
MISR data and obtained the first global surface PM2.5 concentration
map for the period of 2001–2006. This method has also been applied
to a case study of biomass burning, demonstrating this approach can
be applicable even during extreme events, which are quite frequent
for PM2.5 levels in China (van Donkelaar et al., 2011). The most impor-
tant factor affecting the relationship between AOD and PM2.5 is often
the relative vertical profile (van Donkelaar, Martin, & Park, 2006),
which can be evaluated and adjusted, as necessary, by lidar retrievals
from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in-
strument (van Donkelaar et al., 2013).

In this study, we update the estimation of surface PM2.5 concentra-
tions over China to 2006–2012 using a nested-grid chemical transport
model and recent bottom-up emission inventory, with improvements
of other correction factors. We use the nested-grid GEOS-Chem model
to calculate the PM2.5/AOD conversion factors and then apply these
factors to the combined MODIS and MISR AOD data. The satellite-
based surface PM2.5 concentrations are developed at a resolution of
0.1° × 0.1° over China with the error estimates. Finally, the results are
validated against ground-based measurements and applied to human
exposure calculations.

2. Materials and methods

2.1. Ground-based PM2.5 measurements

Since the national PM2.5 air quality monitoring networks in China
were not established until 2013, measurements for 2006–2012 were
collected from literatures. The sources of the data, site locations, sam-
pling period, and other information are all listed in Table S1. In addition,
daily PM2.5 measurements from 2013 were collected from the official
website of the China Environmental Monitoring Center (CEMC)
(http://113.108.142.147:20035/emcpublish/) as a supplemental valida-
tion dataset of our work, which covers 74 cities in China. According
to the Chinese National Ambient Air Quality Standard (CNAAQS,
GB3095-2012, http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/
201203/W020120410330232398521.pdf) released in 2012, the
ground-based PM2.5 data are measured by the tapered element oscillat-
ing microbalance technology (TEOM) or the beta-attenuation method.

2.2. Ground-based AOD measurements

AOD measurements from two ground networks, Aerosol Robotic
Network (AERONET, Holben et al., 1998) and China Aerosol Remote
Sensing NETwork (CARSNET, Che, Zhang, Chen, Damiri, Goloub, Li,
et al., 2009) were collected to filter the satellite AOD with large bias.
The spatial distributions of the two ground networks over China are
shown in Fig. S1. AERONET is a world-wide aerosol monitoring network
and has been widely used for evaluation of satellite remote sensing or
model simulations (Kahn, Garay, Nelson, Yau, Bull, Gaitley, et al.,
2007; Lin, van Donkelaar, Xin, Che, & Wang, 2014; van Donkelaar
et al., 2010). However, AERONET only has a few long-term monitoring
sites over China. CARSNET, which was established by the China Meteo-
rological Administration in 2002, is a Chinese aerosol monitoring net-
work for aerosol optical property study using the same CE-318
sunphotometers as AERONET. AOD data at 550 nm are derived using
values at 440 nm wavelength and the associated Ångstrӧm exponent
in both AERONET and CARSNET data.

2.3. Satellite observations

The MODIS instrument onboard the Terra satellite measures a wide
range of spatial and spectral information, providing global coverage in
1–2 days at a resolution of 10 × 10 km (Levy et al., 2007). The MISR in-
strument, which is also onboard the Terra satellite, uses same-scene,
multi-angle, multi-spectral observations, providing global coverage in
2–9 days at a resolution of 18 × 18 km (Kahn, Li, Moroney, Diner,
Martonchik & Fishbein, 2007). TheMODIS collection 5.1 level 2 products
(MOD04) and the MISR version 22 level 2 products at 550 nm for
2006–2013 are used in this study. Both AOD retrievals are obtained
under cloud-free conditions.

The MODIS BRDF/Albedo product (MCD43B3) estimates 16-day av-
erage land surface albedo using a kernel-driven semi-empirical BRDF
model (Schaaf et al., 2002). It provides both the directional hemispher-
ical reflectance (black-sky albedo) and the bi-hemispherical reflectance
under isotropic illumination (white-sky albedo), which are two
extremes of the true albedo. The 7-year black-sky albedo data at three
wavelengths, 0.47 μm, 0.66 μm and 2.1 μm, are used in this study to
identify different surface types.

The CALIOP instrument onboard the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) satellite has been
acquiring global profiles of aerosol and cloud since 2006 (Winker,
Hunt, & McGill, 2007). CALIOP emits simultaneous, co-aligned pulses
at 1064 nm and 532 nm from its laser and observes the backscattered
radiation by a 1-meter diameter telescope. Extinction profiles at a reso-
lution of 30 m vertical and 333 m horizontal are retrieved and widely
used for validation of modeled vertical profile and their impact on
satellite-derived PM2.5 (Toth et al., 2014; van Donkelaar et al., 2013).

2.4. Combining MODIS and MISR AOD

Satellite AOD retrievals have regional biases compared to ground
measurements and surface reflectance is a major source of uncer-
tainties. To reduce the bias and combine the two products reasonably,
van Donkelaar et al. (2010) has developed a method to distinguish
surface types using black-sky albedo and identify regional errors in
AOD retrievals by extending biases calculated against ground measure-
ments within a certain surface type.

Following the method described by van Donkelaar et al. (2010), we
used two ratios of the 7-yearmonthlymean black-sky albedo (0.47 μm /
0.66 μm and 0.66 μm / 2.1 μm) from the MODIS BRDF/Albedo products
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to divide China region into nine categories, as defined by the combina-
tions of each ratio beingb0.4, 0.4–0.6, and N0.6. Four surface types dom-
inate over China. We used the ground AOD measurements during
2006–2012 to calculate the monthly mean bias of satellite AOD and in-
terpolated in each defined surface type category using inverse distance
weighting method for both MODIS and MISR. Daily satellite AOD data
from either MODIS or MISR with a corresponding monthly bias larger
than ±20% or ±0.1 were excluded and the bias-filtered MODIS and
MISR data were averaged to offer estimates of final long-term retrieval.
All the datawere regridded to 0.1° × 0.1° resolution. The combination of
MODIS and MISR retrievals proved to offer estimates of AOD that were
more reliable and with greater spatial coverage than estimates from ei-
ther instrument alone (van Donkelaar et al., 2010).

2.5. Estimating PM2.5 from AOD

Chemical transport models are used to provide the spatially and
temporally resolved conversion factors to calculate the satellite-
derived surface PM2.5 concentrations, and vertical correction factors
from CALIOP instrument are used to correct the model simulations, as
defined in Eq. (1) (Liu et al., 2004; van Donkelaar et al., 2013):

PM2:5;satellite
� �

i; j ¼ AODsatellite½ �i; j �
PM2:5;model
� �

i; j

X47

v¼1

AODmodel½ �i; j;v � αi;k;v

ð1Þ

where [PM2.5,satellite]i,j and [PM2.5,model]i,j represent the PM2.5 concentra-
tions derived from the satellite or the model simulation at a grid i on a
day j, respectively; [AODsatellite]i,j is the satellite AOD value at a grid i
on a day j; [AODmodel]i,j,v is the modeled AOD at a grid i on a day j of a
model layer v (47 layers in total); αi,k,v is the vertical correction factor
obtained from the CALIOP observations at a grid i on amonth k that cor-
responds to the day j of a model layer v.

In this study, the nested-grid GEOS-Chem model v9-01-02 over
China with resolution of 0.5° × 0.667° (http://geos-chem.org; also see
Supporting information)was utilized to simulate the temporal and spa-
tial distribution of aerosol and gaseous concentrations for 2006–2012.
This model was driven by assimilated meteorological data from the
Goddard Earth Observing System (GEOS-5) at the NASA Global Model-
ingAssimilationOffice (GMAO), and by the year-by-year emissions over
China taken from the Multi-resolution Emission Inventory for China
(MEIC; see Supporting information) developed by Tsinghua University.
Lateral boundary conditions were provided by a global GEOS-Chem
simulation with a resolution of 2° × 2.5°. The 24-h PM2.5 concentration
in the bottom layer of the model was taken to represent the ground-
level concentration. The simulated AOD at a wavelength of 550 nm be-
tween 10:00 and 12:00 local solar time were averaged, corresponding
to the Terra satellite overpass time. Daily conversion factor maps were
linearly interpolated from a model with resolution of 0.5° × 0.667° to
0.1° × 0.1° for application to the satellite AOD.

Aerosol vertical profiles are the most important factor affecting the
ratios between PM2.5 and AOD (van Donkelaar et al., 2006). CALIOP ob-
servations provide valuable information to adjust potential sources of
long-term bias in the model simulation, such as the modeled represen-
tation of vertical mixing or emissions. Following van Donkelaar et al.
(2013), we used retrievals from the CALIOP instrument to evaluate
and correct the simulated aerosol vertical profiles. Aerosol optical
properties in CALIOP profiles are first adjusted to be consistent with
that in model simulations. Aerosol profiles in the model simulations
are then scaled according to the ratios of the simulated to retrieved rel-
ative vertical profiles, normalized to the surface model layer over a
three-month running average. During this process, model simulations
below the CALIOP detection limit are removed to allow for direct com-
parison between model and satellite (Ford & Heald, 2012). CALIOP re-
trievals with cloud and aerosol detection score less than 20 are also
rejected. The AOD columns calculated from the corrected profiles are
used to infer satellite-based PM2.5, as shown in Eq. (1). Although the
spatial and temporal resolution of the CALIOP observation is insu-
fficient to do the day-to-day correction, the climatological drivers of
the bias have been adjusted, which is crucial to the long-term PM2.5

estimates.
We also accounted for sampling bias in satellite-derived PM2.5 con-

centrations, which is especially large in China because AOD data are
usually missing when PM2.5 concentrations are high (van Donkelaar
et al., 2011). The sampling bias correction factor is defined in Eq. (2)
and its application in Eq. (3):

βi;k ¼

XNk

j¼1

PM2:5;model
� �

i; j

XMi;k

j¼1

PM2:5;model
� �

i; j

�Mi;k

Nk
ð2Þ

CorrectedPM2:5½ �i ¼

X

k

PM2:5;satellite
� �

i;k � βi;k � Nk

X

k

Nk
ð3Þ

where βi,k is the sampling bias correction factor at a grid i in a month k;
Nk is the number of days in amonth k andMi,k is the number of days that
the model sampled coincidently with the satellite observations at a
grid i for the month k; [PM2.5,satellite]i,k is the monthly mean data of
the original satellite-derived PM2.5 concentrations in a month k;
[CorrectedPM2.5]i is the final retrieved long-term PM2.5 concentration
at the grid i. For a given model grid i, the sampling correction factor is
calculated as the ratio of full-month mean modeled concentration to
that of model sampled with satellite data. The scale factor is then used
to correct the derived monthly mean PM2.5 concentrations before
long-term averaging.

3. Results

3.1. Input factors for PM2.5 estimate

Mean AOD values for 2006–2012 obtained from MODIS and MISR
over China are presented in Fig. 1. Both the MODIS and MISR AOD
show consistent spatial distributions with large enhancements over
the North China Plain, Yangtze River Delta, and Sichuan Basin, which
are all places with high anthropogenic emissions (Zhang, Streets,
Carmichael, He, Huo, Kannari, et al., 2009). The MODIS retrievals are
not valid in part of northwestern China because of the bright surface
of the Taklimakan Desert; however, MISR can successfully retrieve
AOD in this region. In background areas with AOD of less than 0.2–0.3,
the MODIS and MISR AOD are quite similar, while in other places the
MISR AOD is systematically lower than MODIS with the difference
reaching 0.35 in eastern China. The MISR version 22 is known to under-
estimate AOD frequently over land when AOD exceeds about 0.6
because of the improper partitioning of the radiance, i.e., more top-
of-atmosphere signal is assigned to the surface by the MISR
heterogeneous-land component of the over-land algorithm (Chen,
Kahn, Nelson, Yau, & Seinfeld, 2008; Kahn et al., 2010). AOD is also
underestimated when the absorbing aerosol particles have smaller
single-scattering albedo than those included in the retrieval algorithm
climatology (Chen et al., 2008; Kahn et al., 2010). After the filtration
and combination process of the two sets of satellite data, the biased
AOD is removed and an almost full spatial coverage over China is obtain-
ed (Fig. 1c). The combined AODmap is dominated byMODIS in the east
because of the underestimation by MISR over high-value regions, and
dominated by MISR in the west because of MISR's ability to retrieve
data over bright surfaces. We also select four polluted regions (Fig. 1c)

http://geos-chem.org


Fig. 1. Averaged AOD for 2006–2012 (a) from the MODIS Terra satellite instrument, (b) from the MISR satellite instrument, (c) from the combined product developed in this study, and
(d) in four selected regions. White denotes less than 10 successful satellite observations. Boxed areas outline the regions used in this figure and Fig. 2, which are Northern China (110°E–
120°E, 34°N–44°N), Eastern China (111°E–122°E, 27°N–34°N), Southern China (109°E–119°E, 21°N–26°N) and Sichuan Basin (101°E–110°E, 28°N–34°N).
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and present the regional averaged AOD in Fig. 1d. Eastern China has the
highest AOD value of the four regions, possibly due to its large anthro-
pogenic emissions and relatively high humidity.
Fig. 2. (a) Spatial distribution and (b) regional mean of
Fig. 2 shows the spatial distribution and regional average of the
seven-year mean conversion factors used to derive PM2.5 concentra-
tions from the AOD. The conversion factors are mainly affected by
the averaged ratio of PM2.5 to AOD for 2006–2012.
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aerosol type, meteorological conditions, and aerosol vertical structures.
High values lie in regions with relatively large fractions of aerosols near
the ground, as well as places with greater low-hygroscopic components
(e.g., mineral dust) because of its low contribution of aerosol water to
AOD. Large enhancements of conversion factors above 170 μg/m3 are
found over the northwest parts, which are consistent with the spatial
distribution of dust storms in China (Sun, Zhang, & Liu, 2001). Values
between 90–150 μg/m3 are also found over most of northern and east-
ern China, which are related to industrial regions with surface aerosol
sources.

3.2. Satellite-derived PM2.5 concentrations for 2006–2012

The 7-year mean 24-h-average satellite-derived surface PM2.5 con-
centrations over China are presented in Fig. 3. Large areas of PM2.5 en-
hancement are found in northern and eastern China with PM2.5

concentrations of 70–130 μg/m3 in most regions, and values above
130 μg/m3 in themajor industrialized areas. It is believed that rapid eco-
nomic development and associated industrial activities in northern and
eastern China are the causes of the severe PM2.5 pollution, especially in
the North China Plain (Quan et al., 2011; Wang, Wei, Yang, Zhang,
Zhang, Su, et al., 2014). There is a band of heavy PM2.5 pollution zone
cross over north central Shanxi and Shaanxi, which are regions with
large coal production and abundant coal-fired facilities. Another hotspot
of high concentrations of PM2.5 lies in the Sichuan Basin, which is
surrounded bymountains and experiences adverse pollution dispersion
conditions. The emerging industrialized city clusters over Hubei and
Hunan provinces are also places heavily affected by anthropogenic
emissions, where a large area with PM2.5 concentration (90–120 μg/
m3) was identified by this work. High PM2.5 concentrations are also
found in less populated areas such as northwestern China, which are
dominated by mineral dust from the Taklimakan Desert, the largest de-
sert in China. The spatial distribution of PM2.5 is quite different from that
of AOD, with northern China having higher values than eastern China,
reflecting aerosols aloft in eastern China. This is supported by the
CALIOP observations (see Fig. S2 in Supporting information).

An evaluation of the satellite-derived PM2.5 concentrations against
surfacemeasurementswas conducted using themeasurements collated
Fig. 3. Satellite-derived PM2.5 averaged over 2006–2012 in China
from published work. The locations of the monitoring sites used in this
study are presented in Fig. 4a and the monitoring sites cover most of
eastern China. We only use measurement data with sampling times of
longer than onemonth and among all 68 sites, 46 sites have PM2.5 mea-
surements for at least one year time (awhole year or onemonth in each
season). The collected PM2.5 data are randomly distributed in time and
space (see Table S1 in Supporting information), which are believed to
be representative of the study time period and region. Before compari-
sonwithmeasurements data, the satellite derived PM2.5 concentrations
are corrected using sampling correction factor at monthly-scale and
then averaged to the corresponding measurement time, as defined in
Eqs. ((2)–(3)). The comparison between the collated data and the
mean value of the satellite-derived PM2.5 for the corresponding
sampling period is shown in Fig. 4b. Significant agreement exists with
r = 0.74, slope = 0.77 and intercept = 11.21 μg/m3.

We also compared satellite-derived PM2.5 concentrations with ob-
servations from the national PM2.5 monitoring network for Jan–May
2013 (We only conducted simulations for the first five months in
2013 because the GEOS-5 meteorological data at 0.5° × 0.667° resolu-
tion are not available afterward) as an additional support to our work,
as presented in Fig. 5. Good correlation between the five-month-mean
satellite-based PM2.5 concentration and the corresponding measure-
ment data was found across China (r = 0.85, slope = 1.17,
intercept = −19.71 μg/m3), although the satellite-derived data were
biased a little high in regions above 120 μg/m3 (Fig. 5b).

3.3. Errors

The errors in the long-term satellite-derived PM2.5 concentrations
stemmainly from uncertainties in the AOD retrievals, accuracy of verti-
cal aerosol profile in the model, and impact of incomplete sampling.
After filtration, the AOD retrieval bias against ground-measurement
AOD data lies within the larger bound of ±20% or ±0.1, as regions
with an expected bias exceeding that value are all excluded. The uncer-
tainties in the modeled PM2.5/AOD ratio are dominated by errors in the
simulated relative vertical profile (vanDonkelaar et al., 2006); however,
despite this, it can be affected by emission inputs,meteorological condi-
tions, and chemical processes in the model. The modeled relative
. White space indicates less than 10 successful observations.



Fig. 4. Comparisons between satellite-derived PM2.5 and in situ data collected from publications. (a) Locations of groundmeasurement sites collated. (b) Comparison between measure-
ments from publications and corresponding satellite-derived data for 2006–2012. The solid black line represents the best fit and the red dashed line shows the 1:1 line.
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vertical profiles were evaluated and corrected using the observations
from CALIOP (van Donkelaar et al., 2013; Winker et al., 2007). We
used the standard deviation of the relative ratio between CALIOP and
model simulation to represent errors in the relative profile. Incomplete
sampling by the satellite can also introduce some bias compared with
the continuous averaged value. The sampling bias is calculated as the
difference between the continuous mean model PM2.5 concentrations
and the coincidently sampled simulated values. Then the total errors
in the satellite-derived PM2.5 concentrations were combined in quadra-
ture of three error sources above.

Fig. 6 shows the spatial distribution of the estimated errors from
each source and the total errors in the satellite-derived PM2.5. It can be
seen that most regions have estimated errors within 25% of the
satellite-derived value. In the most polluted region of the North China
Plain, the bias can be reaching 30–35% (Fig. 6a). Profile errors are typi-
cally less than 20%; however, enhanced error is found in Sichuan
Basin, possibly due to the large temporal variation in the relative profile
ratio (Fig. 6b). Satellite AOD is usually missing in the presence of cloud,
bright surfaces due to snow, or extremely high aerosol concentrations
(van Donkelaar et al., 2011). These missing AOD values are heteroge-
neous among seasons, which might cause a systematic bias because
PM2.5 concentrations have large seasonal variability in China. As can
be seen from Fig. 6c, most regions have sampling bias within ±20%:
negative bias in northern China and positive bias in the south. This is be-
cause in northern China, there are more AOD values missing in winter
due to bright surfaces caused by snow, low-level clouds and more
Fig. 5. Comparisons between satellite-derived PM2.5 and in situ data from national networks. (a)
measurements from national ground-based measurements and corresponding satellite-derived
shows the 1:1 line.
frequent haze days (the satellite algorithm may regard heavy haze as
clouds), and PM2.5 concentrations are shown to peak in winter. In
southern China, frequent rainfall in summer causesmoremissing values
of AOD and PM2.5 concentrations in summer are the lowest of the entire
year.

3.4. Population exposure to PM2.5

Long-term exposures to outdoor ambient PM2.5 were estimated for
China at a resolution of 0.1° × 0.1° using our satellite-derived PM2.5 con-
centrations for 2006–2012, in conjunction with the LandScan Global
Population database (ORNL, 2010, Bright, Coleman, Rose, & Urban,
2011). Table 1 presents the national and regional levels of long-term
PM2.5 exposure. The population-weighted mean PM2.5 concentration
over China is 71 μg/m3, which is much higher than in North American
and Europe (van Donkelaar et al., 2010). As can be seen, less than 1%
of the Chinese population lives in conditions with concentrations of
PM2.5 below the World Health Organization (WHO) Air Quality
Guideline (AQG) of 10 μg/m3 (WHO, 2005). China is now using the
WHO Air Quality Interim Target-1 of 35 μg/m3 as the level 2 annual
PM2.5 standard, which is designated for residential, mixed com-
mercial/residential, cultural, industrial and rural areas, according to
CNAAQS. However, approximately 1.1 billion people (82% of total pop-
ulation) in China reside in places exceeding the CNAAQS level 2 annual
standard, and there are more than 330 million people (25% of total)
living in regions with PM2.5 levels higher than 100 μg/m3. Of the four
Locations of groundmeasurement sites from national networks. (b) Comparison between
data for Jan–May 2013. The solid black line represents the best fit and the red dashed line



Fig. 6. Uncertainties in the satellite-derived PM2.5 concentrations. (a) Estimate of the satellite-derived PM2.5 bias. (b) Errors in the aerosol vertical profiles. (c) Percentage change of the
coincidently sampled simulated PM2.5 concentrations relative to the continuous mean model value.
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selected regions, northern China, which covers the political and eco-
nomic center and accommodates 23% of the national population, has
the highest PM2.5 level with a population-weighted mean reaching
104 μg/m3 which exceeds the national standard by a factor of 3. Only
3% people of this region are lived in the areas where can meet level 2
annual standard. Conversely, southern China has much lower PM2.5

concentrations with a population-weighted mean value of 44 μg/m3,
which is 26% higher than the national standard.
Table 1
Regional population-weighted PM2.5 concentration and population in excess of certain PM2.5 le
et al. (2010) for 2001–2006 (referred to as Previous).

Region Population-weighted mean (μg/m3) Population (million)

Total N10 μg/m

This work Previous This work

Northern China 103.8 72.5 303 303
Eastern China 78.2 64.7 359 359
Southern China 44.0 40.2 153 153
Sichuan Basin 87.1 64.6 137 137
China 71.4 53.0 1345 1334
4. Discussion

Epidemiological studies and health impact assessments largely rely
on measurements of the ambient ground-level fine PM (Cao, Xu, Xu,
Chen, & Kan, 2012). However, ground-based monitoring networks are
very limited, especially in China, which has the largest population and
highest air pollution levels in the world. Although China implemented
a national monitoring network in 2013, the monitoring sites are sparse
vels calculated from this work for 2006–2012 and the previous estimates of van Donkelaar

3 N35 μg/m3 N100 μg/m3

Previous This work Previous This work Previous

303 293 271 200 6
359 342 337 62 3
151 100 97 0 0
135 130 116 48 15

1293 1100 935 331 24
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and representative of only a small part of the entire country. Further-
more, there are still no regularmonitoring data for levels of PM2.5 expo-
sure in the past. Satellite remote sensing provides spatially and
temporally continuous information on aerosols in the atmosphere,
which can supplement ground-based measurements by filling gaps in
the measurement dataset (Crouse et al., 2012; Evans et al., 2013).

In this study, we generated a long-term (2006–2012) mean spatial
distribution of PM2.5 concentrations over China using MODIS and MISR
satellite observations and the nested-grid GEOS-Chem chemical
transport model. We compared our results with the satellite-based
2001–2006 global PM2.5 concentrations in van Donkelaar et al. (2010),
which was used in the Global Burden of Disease Study 2010 together
with the simulations from global TM5 model to describe the health
risks caused by fine particles (Brauer et al., 2011). The PM2.5 concentra-
tions over China derived in this study are substantially higher than
those reported in van Donkelaar et al. (2010), especially in heavily pol-
luted regions. According to van Donkelaar et al. (2010), only 24 million
people in China live in areas where PM2.5 concentrations exceed
100 μg/m3, which is a much smaller number than that proposed in this
work (Table 1).

The difference between these two studies likely resulted from both
in the different periods studied and from the improvements imple-
mented in our method. During 2006–2012, the average emissions of
major PM2.5 precursors in China are estimated to be higher than emis-
sions during 2001–2006 (Fig. S3), while SO2 emissions in China have
been decreased after 2006 (Lu, Zhang, & Streets, 2011). Additionally,
we replaced the global model with a nested-grid model, which has a
finer resolution of 0.5° × 0.667° and can more accurately captures the
variations of the conversion factors between AOD and PM2.5 on a local
scale. We also utilized observations from CALIOP to correct the vertical
profiles in the model simulation, which is the most important factor af-
fecting the relationship between AOD and PM2.5. All data including
emission inventories and satellite retrievals were updated to
2006–2012. All of which could contribute to the differences between
two estimates. Therefore, the mortality and morbidity caused by ambi-
ent PM2.5 concentrations could be even higher than found in the Global
Burden of Disease Study 2010.

We also compared our results with Ma et al. (2014) which also fo-
cused on satellite-based PM2.5 estimates in China but using GWR
model. The two datasets have very similar spatial structures, while our
work is higher than that inMa et al. (2014), especially in theheavily pol-
luted regions, with a mean concentration over the North China Plain of
110–150 μg/m3 compared to 85–95 μg/m3. This differencemay arise be-
cause the current GWRmodel tends to underestimate PM2.5 concentra-
tion in heavily polluted regions (Hoff & Christopher, 2009; Liu, Sarnat,
Kilaru, Jacob, & Koutrakis, 2005) and the AOD values aremissing during
serve haze days.

Our work is an update and improvement of the satellite-derived
PM2.5 concentrations in China based on previous work (van Donkelaar
et al., 2010). However, many directions still need to be taken to improve
the satellite-derived PM2.5 concentrations. In the current method of
combing MODIS and MISR AOD data, although we used the ground
measurements as a constraint to screen the satellite retrieval before
merging two products, the biases may not be entirely eliminated due
to the sparse spatial distribution of the ground measurements. In the
current operational satellite AOD product, pixels with 0.47 mm
reflectance N 0.4 are considered cloudy and retrieved AOD N 5.0 is re-
moved (Remer, Tanré, Kaufman, Levy, & Mattoo, 2006). These strict
criteria improved the data quality but might miss AOD while during
heavy haze days because they were mistaken for cloud or exceed 5.0
(van Donkelaar et al., 2011). Improvements in the satellite retrieval al-
gorithm could help to yield better satellite coverage in conditions of
high pollution level and reduce sampling biases. The enhanced forma-
tion of sulfate and nitrate during haze pollutions by heterogeneous
chemistry (Wang, Yao, Wang, Liu, Ji, Tang, et al., 2014; Wang et al.,
2012) and the interaction between aerosol and planetary boundary
layers (Ding et al., 2013) are not included in the GEOS-chem model,
which may lead to the underestimation of PM2.5 concentrations and
bias in aerosol profiles during heavily polluted days (Zheng et al.,
2015). Future developments in the model capabilities for aerosols
could improve the estimation of the conversion factors. Besides, the
monitoring sites used in this study are concentrated in urban regions
and limited over rural areas, which makes it less confident in clean re-
gions. However, this situationmight be improved asmore groundmon-
itoring data will be established in the Chinese national and regional air
quality monitoring network, including rural sites, which could provide
additional inputs to develop and evaluate the satellite-derived database
in the future.

5. Conclusion

Our work is an improvement and update of the satellite-derived
PM2.5 concentrations in China based on previous work. We replaced
the global model with a nested-grid model, which has a finer resolution
of 0.5° × 0.667° and provides the conversion factors between AOD and
PM2.5 on a local scale. We also utilized observations from CALIOP to cor-
rect the vertical profiles in themodel simulation. All data including emis-
sion inventories and satellite retrievals were updated to 2006–2012. We
found significant spatial agreement between the corresponding satellite-
derived and ground-based PM2.5 observations using both the national
network dataset (r = 0.85, slope = 1.17, intercept = −19.71 μg/m3)
and PM2.5 data collated from literatures (r = 0.74, slope = 0.77,
intercept = 11.21 μg/m3).

Our results suggest that the population-weighted geometricmean of
PM2.5 concentration is 71 μg/m3 over China and that less than 1% of the
Chinese population resides in regions with PM2.5 concentrations under
the WHO AQG limit of 10 μg/m3. Moreover, 82% of the population
lives in locations where the PM2.5 concentrations exceed the level 2 an-
nual PM2.5 standard. Such high levels of PM2.5 exposurewill cause an in-
crease in the risk of air-pollution-related health impacts. Population
exposure estimated from this dataset could facilitate studies into the
long-term exposure to PM2.5 in China.
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